资源类型

期刊论文 78

年份

2023 6

2022 6

2021 4

2020 6

2019 8

2018 3

2017 7

2016 2

2015 5

2014 1

2013 3

2012 2

2011 3

2010 5

2009 5

2008 9

2002 1

2001 2

展开 ︾

关键词

海上风机 2

蒸汽裂解 2

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

M23C6 碳化物 1

S 特性 1

SOFC 1

三维有限元分析 1

人工智能 1

人工神经网络 1

仿生 1

低渗 1

催化剂 1

动力强国 1

动态清洗 1

压力脉动 1

可持续发展战略 1

台风 1

展开 ︾

检索范围:

排序: 展示方式:

Exhaust hood for steam turbines-single-flow arrangement

Michal HOZNEDL , Ladislav TAJC , Jaroslav KREJCIK , Lukas BEDNAR , Kamil SEDLAK , Jiri LINHART ,

《能源前沿(英文)》 2009年 第3卷 第3期   页码 321-329 doi: 10.1007/s11708-009-0039-4

摘要: In the past, increased attention was given to the development of an optimal shape for the inlet part of LP turbine casings in SKODA POWER. A double-flow design is typically used for high power output turbines. An optimized shape for the internal diffuser has been found, which transforms the kinetic energy of steam into increased pressure, thus effectively increasing the thermodynamic efficiency of the stage. Some conclusions have been drawn from laboratory experiments, others derived directly from on-site measurements at power plants. The conclusions from the development of double-flow turbines form the basis for the design of the single-flow turbine arrangement. Single-flow design is typically used for lower output turbines. There are still some limitations in applying this arrangement. The designer needs to resolve the bearing position and how to ensure access to them. Reinforcing the ribs and supports are used, therefore, to ensure the rigidity of the entire casing. The optimization of the single-flow diffuser shape is therefore the subject of the study presented below.

关键词: exhaust hood     steam turbines     single-flow arrangement    

Cooling performance of grid-sheets for highly loaded ultra-supercritical steam turbines

Dieter BOHN , Robert KREWINKEL , Shuqing TIAN ,

《能源前沿(英文)》 2009年 第3卷 第3期   页码 313-320 doi: 10.1007/s11708-009-0036-7

摘要: In order to increase efficiency and achieve a further CO-reduction, the next generation of power plant turbines will have steam turbine inlet temperatures that are considerably higher than the current ones. The high pressure steam turbine inlet temperature is expected to be increased up to approximately 700°C with a live steam pressure of 30MPa. The elevated steam parameters in the high and intermediate pressure turbines can be encountered with Ni-base alloys, but this is a costly alternative associated with many manufacturing difficulties. Collaborative research centre 561 “Thermally Highly Loaded, Porous and Cooled Multi-Layer Systems for Combined Cycle Power Plants” at RWTH Aachen University proposes cooling the highly loaded turbines instead, as this would necessitate the application of far less Ni-base alloys. To protect the thermally highly loaded components, a sandwich material consisting of two thin face sheets and a core made from a woven wire mesh is used to cover the walls of the steam turbine casing. The cooling steam is led through the woven wire mesh between the two face sheets to achieve a cooling effect. The wire mesh provides the grid-sheet with structural rigidity under varying operating conditions.In the present work, the cooling performance of the grid-sheets will be investigated applying the conjugate heat transfer method to ultra-supercritical live and cooling steam conditions for a section of the cooling structure. The behaviour of the flow and the heat transfer in the grid-sheet will be analyzed in detail using a parameter variation. The numerical results should give a first prediction of the cooling performance under future operating conditions.

关键词: steam turbines     700&     deg     C-technology     numerical inverstigation     cooling    

Exergy-energy analysis of full repowering of a steam power plant

S. NIKBAKHT NASERABAD,K. MOBINI,A. MEHRPANAHI,M. R. ALIGOODARZ

《能源前沿(英文)》 2015年 第9卷 第1期   页码 54-67 doi: 10.1007/s11708-014-0342-6

摘要: A 320 MW old steam power plant has been chosen for repowering in this paper. Considering the technical conditions and working life of the power plant, the full repowering method has been selected from different repowering methods. The power plant repowering has been analyzed for three different feed water flow rates: a flow rate equal to the flow rate at the condenser exit in the original plant when it works at nominal load, a flow rate at maximum load, and a flow rate when all the extractions are blocked. For each flow rates, two types of gas turbines have been examined: V94.2 and V94.3A. The effect of a duct burner has then been investigated in each of the above six cases. Steam is produced by a double-pressure heat recovery steam generator (HRSG) with reheat which obtains its required heat from the exhaust gases coming from the gas turbines. The results obtained from modeling and analyzing the energy-exergy of the original steam power plant and the repowered power plant indicate that the maximum efficiency of the repowered power plant is 52.04%. This maximum efficiency occurs when utilizing two V94.3A gas turbines without duct burner in the steam flow rate of the nominal load.

关键词: full repowering     exergy analysis     V94.2 and V94.3A gas turbines     double-pressure HRSG     duct burner     Bandarabbas steam power plant     efficiency    

Optimal placement of wind turbines within a wind farm considering multi-directional wind speed using

A.S.O. OGUNJUYIGBE, T.R. AYODELE, O.D. BAMGBOJE

《能源前沿(英文)》 2021年 第15卷 第1期   页码 240-255 doi: 10.1007/s11708-018-0514-x

摘要: Most wind turbines within wind farms are set up to face a pre-determined wind direction. However, wind directions are intermittent in nature, leading to less electricity production capacity. This paper proposes an algorithm to solve the wind farm layout optimization problem considering multi-angular (MA) wind direction with the aim of maximizing the total power generated on wind farms and minimizing the cost of installation. A two-stage genetic algorithm (GA) equipped with complementary sampling and uniform crossover is used to evolve a MA layout that will yield optimal output regardless of the wind direction. In the first stage, the optimal wind turbine layouts for 8 different major wind directions were determined while the second stage allows each of the previously determined layouts to compete and inter-breed so as to evolve an optimal MA wind farm layout. The proposed MA wind farm layout is thereafter compared to other layouts whose turbines have focused site specific wind turbine orientation. The results reveal that the proposed wind farm layout improves wind power production capacity with minimum cost of installation compared to the layouts with site specific wind turbine layouts. This paper will find application at the planning stage of wind farm.

关键词: optimal placement     wind turbines     wind direction     genetic algorithm     wake effect    

Quality and efficiency improvement technology for five megawatt offshore wind turbines and its application

Huali HAN

《工程管理前沿(英文)》 2020年 第7卷 第4期   页码 618-621 doi: 10.1007/s42524-020-0142-0

关键词: renewable energy     megawatt offshore wind turbine     technology-driven     quality improvement    

Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran

Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Hossein GOUDARZI

《能源前沿(英文)》 2019年 第13卷 第3期   页码 494-505 doi: 10.1007/s11708-018-0534-6

摘要: The present study was conducted with the objective of evaluating several proposed turbines from 25 kW to 1.65 MW in order to select the appropriate turbine for electricity and hydrogen production in Firuzkuh area using the decision making trial and evaluation (DEMATEL) and data envelopment analysis (DEA) methods. Initially, five important factors in selection of the best wind turbine for wind farm construction were determined using the DEMATEL technique. Then, technical-economic feasibility was performed for each of the eight proposed turbines using the HOMER software, and the performance score for each proposed wind turbine was obtained. The results show that the GE 1.5sl model wind turbine is suitable for wind farm construction. The turbine can generate 5515.325 MW of electricity annually, which is equivalent to $ 1103065. The average annual hydrogen production would be 1014 kg for Firuzkuh by using the GE 1.5sl model turbine.

关键词: wind turbine     hydrogen production     HOMER software     decision making trial and evaluation (DEMATEL)     data envelopment analysis (DEA)     Firuzkuh    

Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system

Zhaorui ZHAO, Bao YANG, Ziwen XING

《能源前沿(英文)》 2019年 第13卷 第1期   页码 193-203 doi: 10.1007/s11708-019-0608-0

摘要: Recently the porous bilayer wood solar collectors have drawn increasing attention because of their potential application in solar desalination. In this paper, a thermodynamic model has been developed to analyze the performance of the wood solar collector. A modeling analysis has also been conducted to assess the performance and operating conditions of the multiple effect desalination (MED) system integrated with the porous wood solar collector. Specifically, the effects of operating parameters, such as the motive steam temperature, seawater flow rate, input solar energy and number of effects on the energy consumption for each ton of distilled water produced have been investigated in the MED desalination system combined with the bilayer wood solar steam generator. It is found that, under a given operating condition, there exists an optimum steam generation temperature of around 145°C in the wood solar collector, so that the specific power consumption in the MED system reaches a minimum value of 24.88 kWh/t. The average temperature difference is significantly affected by the solar heating capacity. With the solar capacity increasing from 50 kW to 230 kW, the average temperature difference increases from 1.88°C to 6.27°C. This parametric simulation study will help the design of efficient bilayer wood solar steam generator as well as the MED desalination system.

关键词: solar energy     steam generating     multi-effect desalination    

Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles

Xuantao Wu, Jie Wang

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 415-426 doi: 10.1007/s11705-018-1725-8

摘要: Catalytic steam gasification of fine coal char particles was carried out using a self-made laboratory reactor to determine the intrinsic kinetics and external diffusion under varying pressures (0.1–0.5 MPa) and superficial gas flow velocities (GFVs) of 13.8–68.8 cm?s . In order to estimate the gas release rate at a low GFV, the transported effect of effluent gas on the temporal gasification rate pattern was simulated by the Fluent computation and verified experimentally. The external mass transfer coefficients ( ) and the effectiveness factors were determined at lower GFVs, based on the intrinsic gasification rate obtained at a high GFV of 55.0 cm?s . The was found to be almost invariable in a wider carbon conversion of 0.2–0.7. The variations of at a median carbon conversion with GFV, temperature and pressure were found to follow a modified Chilton-Colburn correlation: (0.04< <0.19), where is total pressure and is atmospheric pressure. An intrinsic kinetics/external diffusion integrating model could well describe the gasification rate as a function of GFV, temperature and pressure over a whole gasification process.

关键词: coal char     catalytic steam gasification     pressure     kinetics     diffusion    

Acoustic characteristics of bi-directional turbines for thermoacoustic generators

Dongdong LIU, Yanyan CHEN, Wei DAI, Ercang LUO

《能源前沿(英文)》 2022年 第16卷 第6期   页码 1027-1036 doi: 10.1007/s11708-020-0702-3

摘要: Bi-directional turbines combined with rotary motors may be a feasible option for developing high power thermoacoustic generators with low cost. A general expression for the acoustic characteristics of the bi-directional turbine was proposed based on theoretical derivation, which was validated by computational fluid dynamics modeling of an impulse turbine with fixed guide vanes. The structure of the turbine was optimized primarily using steady flow with an efficiency of near 70% (the shaft power divided by the total energy consumed by the turbine). The turbine in the oscillating flow was treated in a lumped-parameter model to extract the acoustic impedance characteristics from the simulation results. The key acoustic impedance characteristic of the turbine was the resistance and inertance due to complex flow condition in the turbine, whereas the capacitance was treated as an adiabatic case because of the large-scale flow channel relative to the heat penetration depth. Correlations for the impedance were obtained from both theoretical predictions and numerical fittings. The good fit of the correlations shows that these characteristics are valid for describing the bi-directional turbine, providing the basis for optimization of the coupling between the thermoacoustic engine and the turbine using quasi-one-dimensional theory in the frequency domain.

关键词: thermoacoustic power generator     acoustic characteristics     bi-directional impulse turbine     energy conversion    

Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam

《能源前沿(英文)》 2022年 第16卷 第2期   页码 321-335 doi: 10.1007/s11708-021-0741-4

摘要: An advanced cogeneration system based on biomass direct combustion was developed and its feasibility was demonstrated. In place of the traditional single heat source (extraction steam), the extraction steam from the turbine, the cooling water from the plant condenser, and the low-pressure feedwater from the feedwater preheating system were collectively used for producing district heat in the new scheme. Hence, a remarkable energy-saving effect could be achieved, improving the overall efficiency of the cogeneration system. The thermodynamic and economic performance of the novel system was examined when taking a 35 MW biomass-fired cogeneration unit for case study. Once the biomass feed rate and net thermal production remain constant, an increment of 1.36 MW can be expected in the net electric production, because of the recommended upgrading. Consequently, the total system efficiency and effective electrical efficiency augmented by 1.23 and 1.50 percentage points. The inherent mechanism of performance enhancement was investigated from the energy and exergy aspects. The economic study indicates that the dynamic payback period of the retrofitting project is merely 1.20 years, with a net present value of 5796.0 k$. In conclusion, the proposed concept is validated to be advantageous and profitable.

关键词: biomass-fired cogeneration     district heat production system     absorption heat pump     extraction steam     cooling water     low-pressure feedwater    

High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes in a steam

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0741-z

摘要: Many heat transfer tubes are distributed on the tube plates of a steam generator that requires periodic inspection by robots. Existing inspection robots are usually involved in issues: Robots with manipulators need complicated installation due to their fixed base; tube mobile robots suffer from low running efficiency because of their structural restricts. Since there are thousands of tubes to be checked, task planning is essential to guarantee the precise, orderly, and efficient inspection process. Most in-service robots check the task tubes using row-by-row and column-by-column planning. This leads to unnecessary inspections, resulting in a long shutdown and affecting the regular operation of a nuclear power plant. Therefore, this paper introduces the structure and control system of a dexterous robot and proposes a task planning method. This method proceeds into three steps: task allocation, base position search, and sequence planning. To allocate the task regions, this method calculates the tool work matrix and proposes a criterion to evaluate a sub-region. And then all tasks contained in the sub-region are considered globally to search the base positions. Lastly, we apply an improved ant colony algorithm for base sequence planning and determine the inspection orders according to the planned path. We validated the optimized algorithm by conducting task planning experiments using our robot on a tube sheet. The results show that the proposed method can accomplish full task coverage with few repetitive or redundant inspections and it increases the efficiency by 33.31% compared to the traditional planning algorithms.

关键词: steam generator transfer tubes     mobile robot     dexterous structure     task planning     efficient inspection    

海上风机桩式基础结构形式综合模糊优选

翟钢军,李玉刚,康海贵

《中国工程科学》 2010年 第12卷 第11期   页码 40-46

摘要:

针对海上风机基础设计中经常遇到复杂的方案优化选型问题,将多因素、多级模糊优选理论引入到基础的设计选型中。针对影响因素复杂、确定隶属函数主观因素较强的情况, 成功引入因素的优先关系法来确定优选矩阵的隶属度, 较好地解决了确定隶属函数的人为影响。通过此优选模型成功地将影响基础设计选型的13 种主要因素和4 种桩基基础设计形式进行了多级模糊综合优选决策,得到了比较理想的决策结果, 为海上风机基础设计选型提供了新的思路。

关键词: 海上风机     桩基     选型优化     模糊决策    

Dynamic simulation of gas turbines via feature similarity-based transfer learning

Dengji ZHOU, Jiarui HAO, Dawen HUANG, Xingyun JIA, Huisheng ZHANG

《能源前沿(英文)》 2020年 第14卷 第4期   页码 817-835 doi: 10.1007/s11708-020-0709-9

摘要: Since gas turbine plays a key role in electricity power generating, the requirements on the safety and reliability of this classical thermal system are becoming gradually strict. With a large amount of renewable energy being integrated into the power grid, the request of deep peak load regulation for satisfying the varying demand of users and maintaining the stability of the whole power grid leads to more unstable working conditions of gas turbines. The startup, shutdown, and load fluctuation are dominating the operating condition of gas turbines. Hence simulating and analyzing the dynamic behavior of the engines under such instable working conditions are important in improving their design, operation, and maintenance. However, conventional dynamic simulation methods based on the physic differential equations is unable to tackle the uncertainty and noise when faced with variant real-world operations. Although data-driven simulating methods, to some extent, can mitigate the problem, it is impossible to perform simulations with insufficient data. To tackle the issue, a novel transfer learning framework is proposed to transfer the knowledge from the physics equation domain to the real-world application domain to compensate for the lack of data. A strong dynamic operating data set with steep slope signals is created based on physics equations and then a feature similarity-based learning model with an encoder and a decoder is built and trained to achieve feature adaptive knowledge transferring. The simulation accuracy is significantly increased by 24.6% and the predicting error reduced by 63.6% compared with the baseline model. Moreover, compared with the other classical transfer learning modes, the method proposed has the best simulating performance on field testing data set. Furthermore, the effect study on the hyper parameters indicates that the method proposed is able to adaptively balance the weight of learning knowledge from the physical theory domain or from the real-world operation domain.

关键词: gas turbine     dynamic simulation     data-driven     transfer learning     feature similarity    

A steam dried municipal solid waste gasification and melting process

Gang XIAO, Baosheng JIN, Mingjiang NI, Kefa CEN, Yong CHI, Zhongxin TAN

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 193-204 doi: 10.1007/s11783-010-0268-0

摘要: Considering high-moisture municipal solid waste (MSW) of China, a steam dried MSW gasification and melting process was proposed, the feasibility was tested, and the mass and energy balance was analyzed. Preliminary experiments were conducted using a fixed-bed drying apparatus, a 200 kg per day fluidized-bed gasifier, and a swirl melting furnace. Moisture percentage was reduced from 50% to 20% roughly when MSW was dried by slightly superheated steam of 150°C–350°C within 40 min. When the temperature was less than 250°C, no incondensable gas was produced during the drying process. The gasifier ran at 550°C–700°Cwith an air equivalence ratio (ER) of 0.2–0.4. The temperature of the swirl melting furnace reached about 1240°C when the gasification ER was 0.3 and the total ER was 1.1. At these conditions, the fly ash concentration in the flue gas was 1.7 g·(Nm ) , which meant over 95% fly ash was trapped in the furnace and discharged as slag. 85% of Ni and Cr were bound in the slag, as well as 60% of Cu. The mass and energy balance analysis indicates that the boiler heat efficiency of an industrial MSW incineration plant reaches 86.97% when MSW is dried by steam of 200°C. The boiler heat efficiency is sensitive to three important parameters, including the temperature of preheated MSW, the moisture percentage of dried MSW and the fly ash percentage in the total ash.

关键词: municipal solid waste (MSW)     steam drying     gasification and melting    

Impacts of solar multiple on the performance of direct steam generation solar power tower plant with

Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD

《能源前沿(英文)》 2017年 第11卷 第4期   页码 461-471 doi: 10.1007/s11708-017-0503-5

摘要: Solar multiple (SM) and thermal storage capacity are two key design parameters for revealing the performance of direct steam generation (DSG) solar power tower plant. In the case of settled land area, SM and thermal storage capacity can be optimized to obtain the minimum levelized cost of electricity (LCOE) by adjusting the power generation output. Taking the dual-receiver DSG solar power tower plant with a given size of solar field equivalent electricity of 100 MW in Sevilla as a reference case, the minimum LCOE is 21.77 ¢/kWh with an SM of 1.7 and a thermal storage capacity of 3 h. Besides Sevilla, two other sites are also introduced to discuss the influence of annual DNI. When compared with the case of Sevilla, the minimum LCOE and optimal SM of the San Jose site change just slightly, while the minimum LCOE of the Bishop site decreases by 32.8% and the optimal SM is reduced to 1.3. The influence of the size of solar field equivalent electricity is studied as well. The minimum LCOE decreases with the size of solar field, while the optimal SM and thermal storage capacity still remain unchanged. In addition, the sensitivity of different investment in sub-system is investigated. In terms of optimal SM and thermal storage capacity, they can decrease with the cost of thermal storage system but increase with the cost of power generation unit.

关键词: direct steam generation     solar power tower     solar multiple     thermal energy storage capacity     levelized cost of electricity (LCOE)    

标题 作者 时间 类型 操作

Exhaust hood for steam turbines-single-flow arrangement

Michal HOZNEDL , Ladislav TAJC , Jaroslav KREJCIK , Lukas BEDNAR , Kamil SEDLAK , Jiri LINHART ,

期刊论文

Cooling performance of grid-sheets for highly loaded ultra-supercritical steam turbines

Dieter BOHN , Robert KREWINKEL , Shuqing TIAN ,

期刊论文

Exergy-energy analysis of full repowering of a steam power plant

S. NIKBAKHT NASERABAD,K. MOBINI,A. MEHRPANAHI,M. R. ALIGOODARZ

期刊论文

Optimal placement of wind turbines within a wind farm considering multi-directional wind speed using

A.S.O. OGUNJUYIGBE, T.R. AYODELE, O.D. BAMGBOJE

期刊论文

Quality and efficiency improvement technology for five megawatt offshore wind turbines and its application

Huali HAN

期刊论文

Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran

Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Hossein GOUDARZI

期刊论文

Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system

Zhaorui ZHAO, Bao YANG, Ziwen XING

期刊论文

Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles

Xuantao Wu, Jie Wang

期刊论文

Acoustic characteristics of bi-directional turbines for thermoacoustic generators

Dongdong LIU, Yanyan CHEN, Wei DAI, Ercang LUO

期刊论文

Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam

期刊论文

High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes in a steam

期刊论文

海上风机桩式基础结构形式综合模糊优选

翟钢军,李玉刚,康海贵

期刊论文

Dynamic simulation of gas turbines via feature similarity-based transfer learning

Dengji ZHOU, Jiarui HAO, Dawen HUANG, Xingyun JIA, Huisheng ZHANG

期刊论文

A steam dried municipal solid waste gasification and melting process

Gang XIAO, Baosheng JIN, Mingjiang NI, Kefa CEN, Yong CHI, Zhongxin TAN

期刊论文

Impacts of solar multiple on the performance of direct steam generation solar power tower plant with

Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD

期刊论文